翻訳と辞書 |
Weakly harmonic function : ウィキペディア英語版 | Weakly harmonic function
In mathematics, a function is weakly harmonic in a domain if : for all with compact support in and continuous second derivatives, where Δ is the Laplacian. This is the same notion as a weak derivative, however, a function can have a weak derivative and not be differentiable. In this case, we have the somewhat surprising result that a function is weakly harmonic if and only if it is harmonic. Thus weakly harmonic is actually equivalent to the seemingly stronger harmonic condition. ==See also==
* Weak solution * Weyl's lemma
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Weakly harmonic function」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|